Is Your Calf Program Sustainable

Robert James | Down Home Heifer Solutions | jamesre60@gmail.com

Notes:

PowerPoint Slides on next page

Sustainable?

- •The ability to endure, and to remain diverse and productive indefinitely.
- "Five pillars of sustainability" –Dr. Frank Mitloehner UC Davis

2

Primary goal of all heifer rearing programs

- Raise the highest <u>quality</u> heifer that can maximize profits when she enters the lactating herd.
- No <u>limitations</u> that detract from her ability to produce milk under the farm's management system.
- Optimize <u>profits</u> by obtaining highest <u>quality</u> heifer in lowest possible cost in least amount of time.
- \bullet Raise the number of <u>heifers required</u> to meet the goals of the dairy business.

Is your calf program sustainable?

What issues are driving sustainability of the calf enterprise?

- Welfare
- Environment
- •Labor
- Food Safety
- Economic viability

Calf "welfare" Calf and consumer perspective

6

5

Calf rearing is the focus for consumer perceptions of dairy – Univ. of British Columbia

- Animal welfare and consumer willingness to pay for yogurt- Napolitano et al (2008)
- Welfare of calves transported by road Roadknight et al (2021)
- Prolonged cow / calf contact Meagher et al (2019)
- Citizen views on practices of zero grazing and cow calf separation Hotzel (2017)
- Comparison of selected animal observations assess welfare of calves.... Bergman et al (2014)
- Symposium: Considerations for the future of dairy cattle housing: An animal welfare perspective. J. Dairy Sci. 103:5746

Impact of animal "welfare" on calf performance and consumer perceptions

- Paired or group-housed calves
 - Earlier starter intake
 - Adapt better to novel situations
 - Less stressful weaning
 - Jennifer Van Os

Pair housing – Wagner Farm – Iconto Falls, WI 650 Holsteins

- Social Behavior

 - Prefer having a buddy
 They stay with their buddy when moved to larger groups
 Easier transition to weaned calf facility
- Less Antibiotics

9

- Eat more, grow faster, therefore less antibiotics
- Healthier calves
 Death loss: currently 0% for over a year
- Challenges still feeding twice daily learned behavior labor in feeding and cleaning.

Picture – L. Raatz – Wagner Farm

Group Housing – Alternatives

Mob feeders

Acidified Free choice

10

Group housing

- Requirements for group housing success:
 - Maternity
 - Colostrum management
 - Herd health

28

- Facility design ventilation and drainage.
- Different managerial skill set
- Limitation to maximum herd size with different systems?
- Data availability and use with autofeeder system

Another aspect of welfare

Traditional feeding program goals

- Limit feed milk (<1.25 lb DM/DAY)
- Feed low fat CMR (<20%)
- Why? low cost/day and transition to ruminant at earliest age
- Is this normal for mammals?

Feeding and housing for calves von Keyserlingk (2010)

- Milk feeding amounts Ad lib vs restricted to 10% of body
 - Higher BW gains, improved feed conversion, reduced age at first breeding (Diaz, 2001, Shamay, 2005)
 - Less vocalization
 - Fewer unrewarded visits to autofeeder
- Nipple vs bucket feeding higher concentration of enzymes (de Passille, 1993)
 - · Less cross sucking.

Impact of "better" nutrition particularly the first month of life

• Body condition

- Calves fed more milk
 - Reduced duration of scours from Crypto –
 (Olivett, 2012)
 - Greater leukocyte response to Salmonella - (Ballou, 2018)
 - Less mortality and clinical symptoms when challenged with Bovine Herpes Virus and Mannheimia (Ballou et al)
- More milk during first and later lactation - Soberon et al, 2013

13 14

Advantages of body condition in preweaned calf?

Why do we raise calve in individual hutches/pens?

- Disease prevention
- Observation
- •Tradition?

Optimizing returns – facilities to promote calf health, <u>labor efficiency and labor effectiveness</u>

- Calf hutch as the "gold standard"???
 - Labor involved in feeding liquid diet, calf starter, bedding, sanitation
 - Impact of weather on labor
 - Impact of weather on calves
 - Retention of labor
 - Minimizing shrink in liquid and dry diet
 - · Maintaining quality of liquid and dry diet

Seeking a win:win outcome

Calf

Consumer

- More milk earlier in life
- Feed for genetic potential for growth
- Achieve benefits of paired or group housing
- Manage calves to achieve genetic potential
 - <u>Records</u> for proactive calf management
- Raise the number needed maternity, newborn care, minimize morbidity and mortality

17 18

Transporting calves to calf rearing facilities? Another "welfare" issue?

- Age at shipping?
- Length of "haul" without feed or water?
- US 28h?
- DCHA- 24 h, then 5 hour stop
- AABP http://aabp.org/Resources/AABP_Guidelines/t ransportationguidelines-2019.pdf
- Biosecurity with calves co-mingled from multiple source farms?

Canada – February 2020

- Calves may be transported for up to 12 hours if dehydration, starvation and exhaustion are prevented???????
- Once 12 hours is reached, they must be provided with feed, water and rest.
- Calves 8 days and under may only be transported once and are prohibited from going to assembly centres.

Environment

- Impact of the calf program on the nutrient management plan for the dairy?
- N and P excretion by calves?
- 20 -40 g N/day, 3 5g P/day when fed ~ 1.2 – 1.5 kg DM/day (Hill, 2006)
- Climate is large determinant
 "Wetter" climates must collect nutrient effluent from calf hutch sites.

Carol Highsmith - Library of Congress collection

Facilities for calves and nutrient effluent management

22

21

Labor availability and cost

- 2021 meat and dairy employers requested 34,000 H-2A and 2B workers
- One in five livestock and dairy workers are foreign born. In Texas, 51% of dairy workers were immigrants

American Immigration Council – July 2022

Minimum wage and overtime

- Washington state 200,000 farm workers
 - •>40 hours/week overtime pay
- •California phased in >26 or <25 employees
 - 9.5 to 8.0 h/day
 - •55 to 40 h/week
- New York

24

• Minimum wage - \$14.20, overtime 60 h - \$21.30

What can be done to improve labor efficiency and effectiveness

What can be done to improve labor retention?

Calf care tasks

- Maternity calving, colostrum harvest/storage
- Newborn care navels, vaccinations, colostrum feeding, transport
- Milk prep / pasteurizer / storage
- Milk replacer prep
- Milk feeding bucket or bottle, sanitation
- Calf starter feeding
- Health team
- Housing bedding, maintenance, sanitation

25 26

Impact of rearing facility on labor effectiveness

Labor efficiency and effectiveness

Labor efficiency and effectiveness

- Efficiency ++++
- Shrink?
- Repetitive actions of adding and removing nipples?

Do you have a system?

30 29

$Food\ safety\ \ \text{-} \ \text{Is this an issue for dairy}$ calf programs?

- 55% of dairies fed unpasteurized milk saleable and unsaleable.***
- Feeding milk from treated cows is "off label use of antibiotics".
- 38% fed medicated milk replacer
- Preweaned calf health
 21% diarrhea 76% treated
 12% respiratory 95% treated

- Primary antimicrobial
 Tetracyclines
 Cephalosporins
 Tremethoprim/sulfa
 Macrolides/florfenicol

NAHMS DAIRY 2014

Financial management applied to calves!

- Historical = low cost/day
- Limited milk
- Early weaning
- Early calf ranch approach economy of scale, specialization and protocol development.
- Is your calf program low cost/day or low cost for value product?
- · What about optimizing returns?

Cost of raising heifers by stage of growth

	Birth to 200 lb	201 – 700 lb.	701- 850 lb.	851 – Calving
Feed	\$172	\$342	\$105	\$443
Labor	95	88	18	92
All other costs	97	310	116	469
Total	\$364	\$739	\$240	\$1017
% of Total Costs	<mark>15.4%</mark>	31.3%	10.2%	43.1%
% of Total Growth	8%	38%	12%	<mark>35%</mark>

What stage has a greater impact on health? What stage has greatest efficiency of growth? Influence on mammary development?

Karszes, Hill – Dairy Replacement Program: Cost and Analysis, Summer, 2019

Low-cost rearing – Is this a sustainable goal?

- •DCHA goals
 - •Survival
 - •>97% 24 h 60 days
 - Morbidity
 - •Scours <25%
 - Respiratory < 10%

33 34

Preweaning morbidity

- Impact of respiratory disease on lifetime performance?
 - Rossini et al (2004) Treat >2X = reduced herd life and increased AOFC.
 - Bach et al (2010) Treat >4x =1.87 odds of not completing 1st lactation.

Optimizing our returns – biology and \$\$\$

- •Instead of cost/day cost / lb(g) of gain
- Biology and \$\$\$ of nutrition
- Nutrient requirements for maintenance and gain

Growth rate

- Double birth weight by 56 days?
- 85 lb. birth weight = 1.5 lb. / day
- What is genetic potential for growth?
- Heifers that completed 2nd lactation grew more between 12 to 65 days of age than those that did not. (Bach, 2010)
- Each lb. of preweaning ADG = 850 1,130 lb. more milk in 1st lactation (Soberon et al)

Impact of environment on ADG

Whole Milk Intake Quarts	Environmental Temperature (°F)			
	Allowable gain	68	40	20
4	Energy	.85	.36	Lose weight
	Protein	.83		
	\$/lb gain	\$1.81	\$4.27	infinite
8	Energy	2.47	2.1	1.9
	Protein		1.9	
	\$/lb gain	\$1.25	\$1.47	\$1.63

Calves lose weight at 4 quarts when temperature is less than 30°

Calf continue to grow regardless of temperature at higher feeding rates

Most important during first 30 days of life when limited starter intake

37 38

Cost per pound of gain for 120-lb. calf

Type of milk	2qt. Twice Daily	3 qt. Twice Daily
Whole milk 3.25 PR 3.75 Fat	\$2.95	\$2.04
Milk Replacer 20%CP, 20% FAT, 12.5% S	\$3.23	\$2.07
Milk Replacer 24%CP, 22% FAT, 12.5% S	\$2.66	\$1.79
Milk Replacer 26%CP, 17%FAT, 12.5% S	\$2.39	\$1.82
Milk Replacer 26%CP, 24% FAT, 12.5% S	\$2.48	\$1.71
Milk Replacer 28%CP, 20%FAT, 12.5%% S	\$2.24	\$1.67
	// 2040 0 : // 114	

Robert Corbett – May /June 2018 – Dairy Herd Management

Optimizing returns – raise what you need!

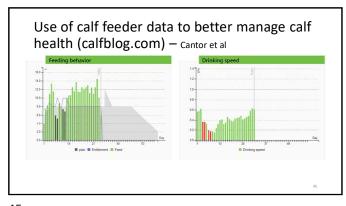
- •Cost to rear replacement heifer exceeds their market value.
 - 2019 Dairy Replacement Cost \$2,094 \$2,607 J. Karzes.
- •Selling surplus replacements is not usually profitable. 1/6/2023 USDA / AMS \$1,338
- •Biosecurity risk of purchasing replacements.

Optimizing returns - cont'd.

- Control involuntary culling rate in milking herd
- Raise what you need.
 - Calf mortality minimize
 - Optimize potential of what you raise
 - Nutrition
 - Health

How do you "manage" your calves?

- to handle or direct with a degree of skill: such as:
- to exercise executive, administrative, and supervisory direction of, <u>manage</u> a business
- Hmmm.... Apply this to the calf enterprise


41 42

Essentials for calf management

- Calf management team feeders, managers, herd management, DVM, industry partners
- Communication pathways
- Records minimal lag and relevant to achieving goals (growth, health, financial.
- Commitment to improvement.

Impact of technology

- Robotic milking Are these herds managed differently than conventional herds?
- Apply this mindset to managing calves
- •Data for calf management?
 - Consumption, drink speed, breakoffs, unrewarded visits, treatments

What does the future hold and are you ready?

- Where is your calf program now?
- Where do you want it to be?
- How will you get there?
- Is your calf program important to your farm?

45 46

Is your calf program sustainable?

- Plan for the future
- Feeding for success health and future milk
- Housing system paired or group housing
- · Labor effectiveness and efficiency
- Environmentally compatible.
- Economically sustainable

 - Raise what you need.
 Control morbidity and mortality
 Manage your calf program with the same mindset as your cows!