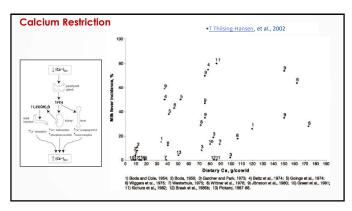
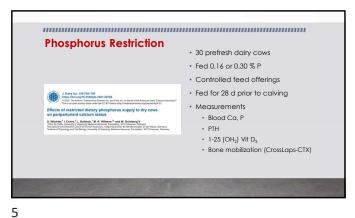
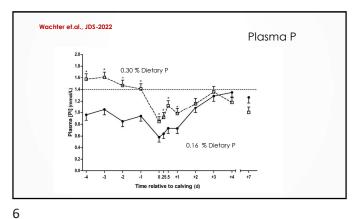
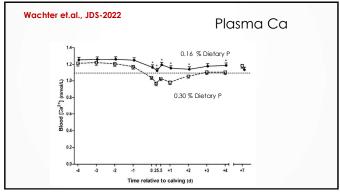

Calcium Release Technologies (CaRT)

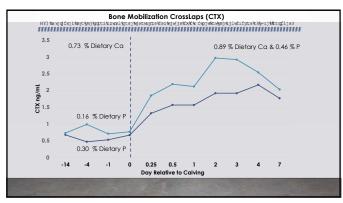
Pat Hoffman | University of Wisconsin-Madison | pchoffma@wisc.edu

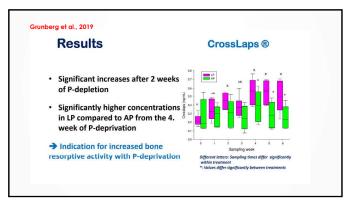

Notes:

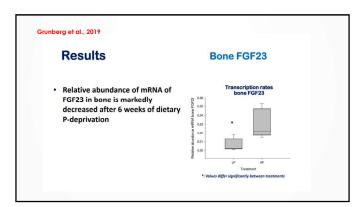

PowerPoint Slides on next page






Ca Response Technologies Dietary Ca Restriction Dietary P Restriction Zeolite A S-HTP Solanum glaucophyllum Difructose Anhydride Calcidiol 25 (OH) Vit D₃





Wachter et.al., JDS-2022 (Summary) Feeding 0.16 % P vs 0.30 % P to prefresh cows.....

- Decreased blood P
- Increased blood Ca
- Increased bone mobilization
- $\boldsymbol{\cdot}$ PTH did not directly explain differences in bone mobilization
- 1-25 (OH₂)D₃ status appeared to be under the influence of P homeostasis precalving and Ca homeostasis postcalving??
- Authors speculated that P homeostasis was under the control of FGF23 (not measured) as opposed to PTH

FGF23 Fibroblast Growth Factor

Produced in bones cells

Identified in the early 2000s

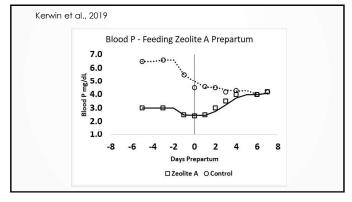
Is a bone derived hormone

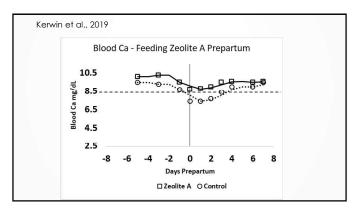
Suppresses phosphate reabsorption (kidney)

Modulates kidney Na and P transport

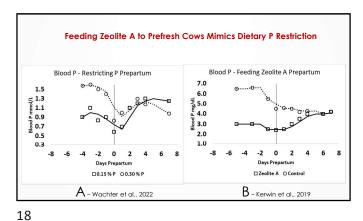
Suppresses enzymes that activate

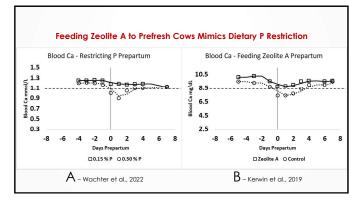
1-25 (OH₂)D₃

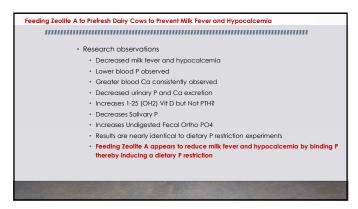

Increases when blood P is high

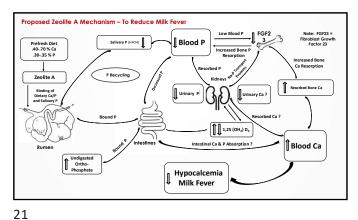

Decreases when blood P is low

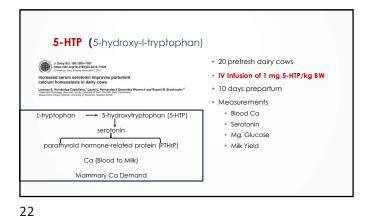
Peolite A Synthetic Zeolite Heavily studied sodium aluminium silicate High ion exchange capacity Commercially Available to Feed to Dairy Cows To reduce milk fever To reduce subclinical hypocalcemia Introduced as a Ca Binder New research = binding of recycling P Fed 14-21 d prefresh

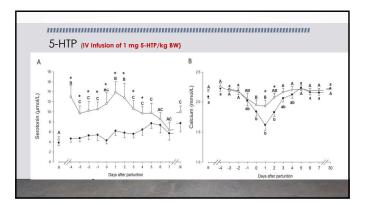


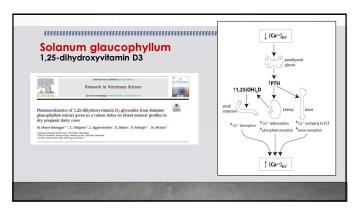

13 14

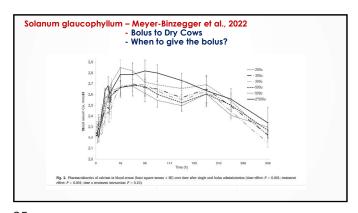


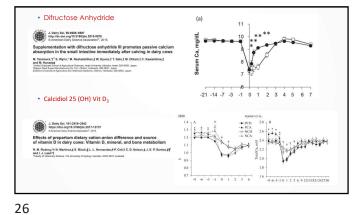



						Blood Ca	Blood P	Clinical Milk Fever % of
		Dietanu	Ca % DM	Dietary	D % DM	Response % of Control	Response % of Control	Control
Reference	Treatments	Zeolite	Control	Zeolite	Control		Zeolite vs Control	
Thilsing-Hansen et al., 2001	Zeolite vs Control	0.64	0.45	0.64	0.45	+ 27 %	NR I	- 33 %
Kerwin et al., 2019	Zeolite vs Control	0.65	0.68	0.38	0.39	+ 22 %	- 50 %	0%
Frizzarini et al., 2022	Zeolite vs DCAD	NR	NR	NR	NR	+11 %	-47%	NR
	Zeolite vs Control	NR	NR	NR	NR	+17 %	-49%	NR
Crookenden et al., 2020	Zeolite vs Control	NR	NR	NR	NR	+13 %	-73 %	NR
Pallesen et al., 2007	Zeolite vs Control	0.61	0.69	0.61	0.69	+ 33%	- 10 %	- 75 %
	Zeolite vs Control	0.61	0.33	0.61	0.69	+ 57 %	- 72 %	-100 %
Grabherr et al., 2008	Zeolite vs Control	0.42	0.38	0.42	0.38	+ 11 %	- 22 %	NR
Saraiva de Oliveira, 2021	Zeolite vs DCAD	0.57	2.53	0.36	0.43	+ 13 %	- 45 %	-51%
Thilsing-Hansen et a., 2002	Zeolite vs Control	0.60	0.60	0.30	0.30	+12 %	- 36 %	0%
Khachouf et al., 2019	Zeolite vs Control	2.79	2.79	0.80	0.80	+8%	0%	NR
NR = not reported								









Ca Response Technologies - Summary					
Technology	CaRT	On-Farm Reality			
Dietary Ca Restriction	Yes	Infeasible			
Dietary P Restriction	Yes	Difficult to formulate diets low enough in			
Zeolite A	Yes	Commercially available. Induces dietary P restriction – bone mobilization of Ca/P.			
5-HTP	Yes	Commercial application in development			
Solanum glaucophyllum	Yes	Commercial applications emerging			
Difructose Anhydride	No	Increases Ca absorption post-partum			
Calcidiol 25 (OH) Vit D ₃	No	Improves Vit D status which has other benefits			

