Sorting Through The Value of Feed Additives
2019 Large Herd Conference—Reno NV

Mike Hutjens

Today’s Program
• Feed additives status and selection
• Role of B-vitamins
• A look at bacterial DFM

Feed Additive Concepts
• Margins are tightly, pull out feed additives
• Less than 10 cents a cow per day
• Covers up poor management
• Additives as profit enhancing opportunities

2018 U.S. Feed Additive Use
2018 Hoard’s Market Survey

Buffers 38
Yeast/yeast culture 29
Rumensin 24
Mycotoxin binders 24
Probiotics 11
Niacin 10
Omnigen 8
Don’t use 7
Feed bunk stabilizer 2

2018 U.S. Silage Inoculant Use
2018 Hoard’s Market Survey

Inoculant Usage 36%
Average Expenditure $6,087
Corn silage 90%
Haylage 76%
High moisture corn 30%
Baled hay 13%

Roles of Feed Additives
Energy Balance
• Propylene Glycol
• Encapsulated Calcium
• Niacin
• Calcium Propionate
• Rumenin
• Bypass Fat
• Probiotics

Calcium Balance
• Sequestered Calcium
• Animal Gel
• Citrate
• MgSiO
• CaCO3
• NDF/GI

Immune Function
• Organic Selenium
• Vitamin E
• Organic TM
• Bradex
• Omegagen-AF
• Probiotics

Rumen Enhancers
• Feed Formulator
• DFM
• Rumensin
• Buffers
• K-Carb
• Sugars
• Enzymes
• Aminoblot
• Probiotics

Reproduction
• Bypass Fat
• Repro Formulas
• Agri-biotics
• Organic Selenium

Foot Health
• Biotin
• Organic TM

Protein Efficiency
• Ultramet
• MicroAid

Mycotoxin Binders
• MTB 100
• Omegagen AF
• BioZinc
• Gardbond

Courtesy of Vita Plus
Using The Four R Concept

Response
How does it work & will it work on your farm

Return
The benefit to cost ratio (>2:1)

Research
Impact and results

Records
On your farm

Benefit to Cost Ratios

Buffers: 8 : 1
Biotin: 7 : 1
Yeast products: 5 : 1
Ionophores: 5 : 1
Silage inoculant: 3 : 1
Rumen protect choline: 3 : 1

When Evaluating Research Ask for:

Type I and II Errors (Yeast Culture)

- **Correct**
 - Type I Error ($0.01/cow/day)
 - Type II Error ($0.35/cow/day)

- **Incorrect**
 - Type I Error
 - Type II Error

Meta-analysis

Monensin Meta Analysis Milk Performance

Duffield et al. 2008. JDS. 91:1347

- 36 Papers
- 71 Trials
- 9,677 Cows

Dry matter intake: - 0.67 lb
Milk yield: + 1.57 lb
Milk fat test: - 0.13%
Milk protein test: - 0.03%
Feed efficiency: + 2.5%
BCS: +0.03/+0.13 lb

Fatty acid milk composition
- Short chain FA’s: -1 to 12%
- Linoleic: + 22%

Your Decision:
Which Feed Additive(s)
Additives Recommended for Lactating Cows
- Rumen buffers
- Yeast culture/yeast products
- Monensin (Rumensin)
- Silage inoculants
- Biotin
- Organic trace minerals

Hutjens Priority
1. Rumensin
2. Silage inoculants
3. Organic trace minerals (Zn, Se, Cr, & Cu)
4. Yeast and yeast culture
5. Sodium bicarb/S-carb
6. Biotin

Additives Recommended for Close Up Dry Cows
- Yeast culture/yeast products
- Monensin (Rumensin)
- Silage inoculants
- Organic trace minerals + chromium
- Anionic product (if DCAD is > +20 meq/kg or 2 meq/100 gm)

Additives Recommended for Fresh Cows
- Rumen buffers
- Yeast culture/yeast products
- Monensin (Rumensin)
- Calcium supplement (bolus/drench)
- Silage inoculants
- Biotin
- Organic trace minerals + chromium
- Rumen protected choline

Hutjens “As Needs” List
- Propylene glycol (300 to 500 ml)
- Calcium propionate (150 grams)
- Niacin (3 g protected; 3 g unprotected)
- Mycotoxin binders (clay mineral or yeast cell MOS compounds)
- Protected choline (15 g per day)
- Anionic products / salts (amount varies)
- Acid-based preservatives (baled hay & high moisture corn 0.5 to 1%)

Hutjens’ “Watch” List
- Essential oil compounds (0.5 to 1.5 g)
- Direct fed microbial products (probiotics)
- Feed enzymes (fiber and amylase)
Role of B Vitamins

• Essential nutrients for the dairy cow
• Involved in various metabolisms as enzymes cofactors (activators)

B Vitamins: Needed for Liver Glucose Synthesis

Glucose is needed for:

– Milk: 72g glucose /kg milk * 40 kg milk/day = 3 kg of glucose needed daily
– Oocyte: needed for quality
– Immune cells: main source of energy when activated, may need 2 kg/day

B Vitamins: Needed During Different Periods

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Estimated Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactation Period</td>
<td>Transition Period</td>
</tr>
<tr>
<td>Thiamin (mg)</td>
<td>Sufficient</td>
</tr>
<tr>
<td>Riboflavin (mg)</td>
<td>Sufficient</td>
</tr>
<tr>
<td>Pantothenic Acid</td>
<td>Not Sufficient</td>
</tr>
<tr>
<td>Pyridoxine (mg)</td>
<td>Not Sufficient</td>
</tr>
<tr>
<td>Niacin (mg)</td>
<td>Sufficient</td>
</tr>
<tr>
<td>Biotin (mg)</td>
<td>Not Sufficient</td>
</tr>
<tr>
<td>(B_{12}) (mg)</td>
<td>Borderline</td>
</tr>
<tr>
<td>Choline (g)</td>
<td>Sufficient</td>
</tr>
<tr>
<td>Folic Acid (mg)</td>
<td>Not Sufficient</td>
</tr>
</tbody>
</table>

*Based on independent research plus specific roles of B vitamins and choline

B Vitamins: Rumen Degradation

Options

• Injection
 – Stressful, impractical and costly
• In the Diet
 – Protected from ruminal degradation
 – Best method

<table>
<thead>
<tr>
<th>Vitamins</th>
<th>Ruminal Degradation/Disappearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riboflavin</td>
<td>99%</td>
</tr>
<tr>
<td>Choline</td>
<td>99%</td>
</tr>
<tr>
<td>Niacin</td>
<td>98%</td>
</tr>
<tr>
<td>Folic acid</td>
<td>97%</td>
</tr>
<tr>
<td>Vitamin B12</td>
<td>80%</td>
</tr>
<tr>
<td>Pantothenic acid</td>
<td>78%</td>
</tr>
<tr>
<td>Pyridoxine</td>
<td>63%</td>
</tr>
<tr>
<td>Biotin</td>
<td>60%</td>
</tr>
</tbody>
</table>

Biotin

Improve hooves by reducing heel warts, claw lesions, white line separations, sand cracks, and sole ulcers; increase milk yield

Level: 10 to 20 mg/cow/day for 6 mo to 1 year
Cost: 4 to 8 cents/cow/day
Benefit to Cost Ratio: 4:1
Ohio State Biotin Data (2001)
- 45 cows
- 14 days prepartum to 100 days postpartum
- No effect on DMI, body weight, or BCS

<table>
<thead>
<tr>
<th>Level</th>
<th>Milk yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>37.0 kg (81.4 lb)</td>
</tr>
<tr>
<td>10 mg/day</td>
<td>37.9 kg (83.4 lb)</td>
</tr>
<tr>
<td>20 mg/day</td>
<td>39.8 kg (87.5 lb)</td>
</tr>
</tbody>
</table>

UW Trial - Treatments
(mg/c/d)

<table>
<thead>
<tr>
<th></th>
<th>BBVIT 1x</th>
<th>BBVIT 2x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotin</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Thiamin</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Pyridoxine</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>B12</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>Niacin</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>Pantothenic acid</td>
<td>0</td>
<td>475</td>
</tr>
<tr>
<td>Folic acid</td>
<td>0</td>
<td>475</td>
</tr>
<tr>
<td>Control (C) was fed none for all of the above</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UW Trial – Results

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>B</th>
<th>BBVIT 1x</th>
<th>BBVIT 2x</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW, lb</td>
<td>1456</td>
<td>1461</td>
<td>1452</td>
<td>1459</td>
<td>9</td>
</tr>
<tr>
<td>DMI, lb/d</td>
<td>55.0b</td>
<td>56.5a</td>
<td>55.0b</td>
<td>53.7b</td>
<td>0.9</td>
</tr>
<tr>
<td>Milk, lb/d</td>
<td>81.8b</td>
<td>85.6a</td>
<td>84.3ab</td>
<td>82.5b</td>
<td>1.8</td>
</tr>
</tbody>
</table>

*ab Means in the same row with different superscripts differ (P<0.05)

Synthesis of Biotin - an in vitro study

Influence of biotin on foot lesions

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Reference</th>
<th>Biotin dose</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sole ulcer</td>
<td>Hagemeister</td>
<td>10 mg</td>
<td>Significant reduction in sole ulcers and heel erosion</td>
</tr>
<tr>
<td></td>
<td>Lischer et al.</td>
<td>20 mg</td>
<td>New horn formed more rapidly. Structure of new horn was improved</td>
</tr>
<tr>
<td>Digital dermatitis</td>
<td>Distl & Schmid,</td>
<td>20 mg</td>
<td>20-37% lower incidence of "heel warts" in an 11 month study</td>
</tr>
<tr>
<td>Vertical fissures</td>
<td>Campbell et al,</td>
<td>10 mg (Beef cows)</td>
<td>Incidence of sandcracks: Control 29.4%, Treatment 14.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesion / Study</th>
<th>Reference</th>
<th>Biotin dose</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>White line Disease</td>
<td>Midla et al,</td>
<td>20 mg</td>
<td>Significant improvement in prevalence of white line lesions at 100 days of lactation</td>
</tr>
<tr>
<td></td>
<td>(1998)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hedges et al,</td>
<td>20 mg</td>
<td>Biotin halved the risk of clinical lameness caused by white line lesions. Biotin supplemented animals required fewer repeat treatments (17.5% v. 30%)</td>
</tr>
<tr>
<td></td>
<td>(2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasture fed Cattle</td>
<td>Fitzgerald et al,</td>
<td>20 mg</td>
<td>Supplemented herds had a significant reduction in lesions causing lameness</td>
</tr>
</tbody>
</table>
The influence of 20mg/day biotin supplementation on the incidence of clinical lameness caused by white line disease in dairy cattle (Hedges et al 2001)

Rumen Protect B-Vitamins

Encapsulation: Not available in the rumen pH, but available in the lower gut at lower pH

Embedded: In lipid which is rumen inert, but released in the lower gut when lipases break down to fatty acids to be absorbed.

Niacin - 2015 ADSA Meetings

- Feeding 3.5 grams of rumen protected niacin (RPN)
- California field study with 672 Holstein cows
- 15 days prepartum to 150 days after calving
- Dry matter increased fresh cow pen (42.5 vs. 46.9 lb)
- Ketosis levels were reduced
- No impact on milk yield, milk components, or fertility
- Higher levels of RPN were not effective

Guidelines for RPN

- 3 grams RPN for transition cows (7 grams lowered feed intake and response)
- 65% rumen protected
- Higher levels for heat stress reduction (15 to 19 grams per day)
- Cost is three cents per gram of RPN

R.P. Choline Meta Analysis

Grummer, 2012

13 research studies
4.9 lb milk responses (P< 0.0001)

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>RPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMI (lb/day)</td>
<td>39.9</td>
<td>41.6</td>
</tr>
<tr>
<td>Milk (lb/day)</td>
<td>70.9</td>
<td>75.8</td>
</tr>
<tr>
<td>ECM (lb/day)</td>
<td>76.9</td>
<td>82.8</td>
</tr>
<tr>
<td>Protein (lb/cow)</td>
<td>2.30</td>
<td>2.47</td>
</tr>
<tr>
<td>Fat (lb/cow)</td>
<td>2.78</td>
<td>3.04</td>
</tr>
</tbody>
</table>

Commercial Vitamin B Complex/Blend

- **Biotin** 10 mg/day
- **Folate** 2 mg/day
- **Pantothenic acid** 120 mg/day
- **Pyridoxine** 75 mg/day
Milk Production At First Test

Body condition score + 0.09 unit

More milk (+0.9 kg) and components

Feed efficiency increased by 5.2% (1.81 vs 1.72)

Culling rate reduced by 20%

No change in dry matter intake

Conception rate at first milk production

More cows pregnant until 23 milk protein

Role of DFM / Probiotics

Evans E. et al., 2006

Effect of protected B vitamins on first service conception rate

Morrison et al., 2018

Effect on DMI & Milk Production

Morrison et al., 2018

Effect on milk fat and protein yield

Morrison et al., 2018

Effect on ovulation

Richard et al., 2016

Protected B Vitamins: Improved Reproduction

Effect of protected B vitamins on first service conception rate

University of California, Juchem et al., 2012

- Conception rate at first service increased by 13%
- More cows pregnant until 200 days in milk
- Culling rate reduced by 20%

Improved Reproductive Performance
Microorganisms in probiotic products (Holzapfel)

<table>
<thead>
<tr>
<th>Lactobacillus</th>
<th>Bifidobacterium</th>
<th>Other LAB</th>
<th>Non-lactics</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. Acidophilus</td>
<td>B. animalis</td>
<td>E. faecium</td>
<td>Bacillus cereus</td>
</tr>
<tr>
<td>L. Casei</td>
<td>B. bifidum</td>
<td>L. lactis</td>
<td>Bacteroides ovatus</td>
</tr>
<tr>
<td>L. Crispatus</td>
<td>B. breve</td>
<td>L. mesenteroides</td>
<td></td>
</tr>
<tr>
<td>L. Gallinarum</td>
<td>B. infantis</td>
<td>L. thermophilus</td>
<td></td>
</tr>
<tr>
<td>L. Gasseri</td>
<td>B. lactis</td>
<td>S. inulinus</td>
<td></td>
</tr>
<tr>
<td>L. Johnsonii</td>
<td>L. longum</td>
<td>P. acidilacti/ freudenreichii</td>
<td></td>
</tr>
<tr>
<td>L. Plantarum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plus 3 more</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bacteria With Potential (Kung)

<table>
<thead>
<tr>
<th>Source</th>
<th>Dose</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Elsdonii</td>
<td>8.7 x 10^6</td>
<td>Lactic acid prevention</td>
</tr>
<tr>
<td>L. Acidophilus</td>
<td>1 x 10^8</td>
<td>Increase DM intake under stress</td>
</tr>
<tr>
<td>Propionibacteria</td>
<td>1 x 10^9</td>
<td>Increase feed efficiency high carbs</td>
</tr>
<tr>
<td>P. acidpropionici</td>
<td>1 x 10^9</td>
<td>Increase propionic acid</td>
</tr>
<tr>
<td>P. freudenreichii</td>
<td>na</td>
<td>Weight gain in calves</td>
</tr>
<tr>
<td>P. freundreichii + 1 x 10^9 +</td>
<td>L. acidophilus</td>
<td>Improve feed efficiency</td>
</tr>
</tbody>
</table>

Commercial Products

Hoards, 2018

<table>
<thead>
<tr>
<th>Product</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probios</td>
<td>28%</td>
</tr>
<tr>
<td>Rumen Booster</td>
<td>20%</td>
</tr>
<tr>
<td>Bio-Vet</td>
<td>15%</td>
</tr>
<tr>
<td>Priority One</td>
<td>7%</td>
</tr>
<tr>
<td>Lira Gold</td>
<td>7%</td>
</tr>
<tr>
<td>Bovamine</td>
<td>11%</td>
</tr>
<tr>
<td>Fastrack</td>
<td>4%</td>
</tr>
<tr>
<td>Performance</td>
<td>4%</td>
</tr>
<tr>
<td>Tri-Lution</td>
<td>6%</td>
</tr>
<tr>
<td>Tri-Mic</td>
<td>4%</td>
</tr>
<tr>
<td>Dairyman’s Edge</td>
<td>2%</td>
</tr>
<tr>
<td>Other products</td>
<td>15%</td>
</tr>
</tbody>
</table>

Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle.

A. DFM integrate directly into the biofilm through the production of antimicrobials such as bacteriocins and organic acids.

B. DFM may either utilize substrates associated with the fluid environment. Concept adapted from McAllister et al. (1994).

Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle.

A. Competition for nutrients that limit microbial growth.

B. Direct antagonism through the production of antimicrobials.

C. Competitive exclusion through occupation of specific binding sites.

D. Stimulation of the immune response resulting in host exclusion of the pathogen.

E. Enhanced gut health through restoration of epithelial integrity.

Exclusion of pathogens

A. Competition for nutrients

B. Direct antagonism

C. Competitive exclusion

D. Stimulation of the immune response

E. Enhanced gut health

Adapted from O'Toole and Cooney (2008).

Adapted from O'Shaughnessy and Cooney (2008).
Current Theme / Focus

- Stabilize rumen fermentation
 - Reduce diurnal variation
 - Maintain rumen pH above 5.8
 - Avoid production of trans acids
- "Control" lactic acid production
- Stimulate lactic utilizers via production of lactic acid
- Combination of products (bacteria, yeast products, and micronutrients)

Primary role for supplemental DFM could be following periods of high stress, such as:

- Neonatal calves
- Post weaning
- Following shipping
- During periods of heat stress
- During the early postpartum period
- Following metabolic disorders

Guidelines for DFM

- Add DFM to milk/milk replacer calf diets
- Continue to monitor product research
- Evaluate on-farm responses to DFM
- Determine the criteria of a DFM that you may consider
- May reduce the level of antibiotics needed

Take Home Messages

- Feed additives can be an effective and economic additions to balanced rations
- Ask for research results
- Rumen protect B-vitamins may be needed
- Probiotics applications should be monitored
- Continue to monitor new research results

Questions?